On the Plane Geometry with Generalized Absolute Value Metric
نویسندگان
چکیده
منابع مشابه
On the Plane Geometry with Generalized Absolute Value Metric
Metric spaces are among the most important widely studied topics in mathematics. In recent years, Mathematicians began to investigate using other metrics different from Euclidean metric. These metrics also find their place computer age in addition to their importance in geometry. In this paper, we consider the plane geometry with the generalized absolute value metric and define trigonometric fu...
متن کاملA Generalized Hyperbolic Metric for Plane Domains
A plane domain Ω with more than one boundary point admits a hyperbolic metric and with respect to this metric, every holomorphic map of Ω into a subdomain X ⊆ Ω is a contraction. In this paper we define a new metric for the image domain X that is greater than or equal to the hyperbolic metric. Like the hyperbolic metric it has the property that any holomorphic map from Ω into X is a contraction...
متن کاملA note on unique solvability of the absolute value equation
It is proved that applying sufficient regularity conditions to the interval matrix $[A-|B|,A + |B|]$, we can create a new unique solvability condition for the absolute value equation $Ax + B|x|=b$, since regularity of interval matrices implies unique solvability of their corresponding absolute value equation. This condition is formulated in terms of positive deniteness of a certain point matrix...
متن کاملOn Infinitesimal Conformal Transformations of the Tangent Bundles with the Generalized Metric
Let be an n-dimensional Riemannian manifold, and be its tangent bundle with the lift metric. Then every infinitesimal fiber-preserving conformal transformation induces an infinitesimal homothetic transformation on . Furthermore, the correspondence gives a homomorphism of the Lie algebra of infinitesimal fiber-preserving conformal transformations on onto the Lie algebra of infinitesimal ...
متن کاملOn the topological equivalence of some generalized metric spaces
The aim of this paper is to establish the equivalence between the concepts of an $S$-metric space and a cone $S$-metric space using some topological approaches. We introduce a new notion of a $TVS$-cone $S$-metric space using some facts about topological vector spaces. We see that the known results on cone $S$-metric spaces (or $N$-cone metric spaces) can be directly obtained from...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2008
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2008/673275